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On Singular Singularly-Perturbed Initial Value Problems
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Abstract
Consider the vector initial value problem e§ = f(t,y,e), y(0) =y (¢)
with f£(t,y,0) = F(t)y + G(t) for a singular matrix F(t) of constant rank
with stable eigenvalues and zero eigenvalues having simple elementary divis-
ors. This paper shows how to determine the unique limiting solution when
the reduced problem FYO + G =0 1is solvable and how to obtain a uniform

asymptotic expansion for the solution on finite t intervals.
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1. Introduction

We wish to consider the vector initial value problem
m ey = £(t,y,8), YO = yO(e)
in the nearly linear situation that
(2) f(t,y,0) = F(t)y + G(t).

When F(t) is stable on some interval 0 <t <T, it is a classical result
of Tihonov [17] that the limiting solution of the initial value problem (1)

will converge to the solution Yo = -F-lc of the reduced equation
(3) 0 = F(£)Y, + G(t)

for 0 <t <T as the small positive parameter € tends to zero. (The
result continues to be valid for all t > 0 if YO decays exponentially to
zero as t + = (cf. Hoppensteadt [7]).) The solution generally converges
nonuniformly at t = 0 since we cannot expect that yo(O) = YO(O). Assuming
infinite differentiabili;y of £f in t and y and asymptotic series expan-

sions in € for both £ and yo, we can indeed show that the asymptotic

solution y(t,e) of (1) is of the form
(4) y(t,e) = Y(t,e) + N(t,¢e)

throughout 0 < t <T where Y and NI have asymptotic expansions in ¢

and the terms of N all tend to zero as the stretched (or boundary layer)
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variable

(5)

T =t/e

tends to infinity. Thus, the limiting asymptotic solution for t > 0 is

provided by the outer solution Y(t,e), and the nonuniform convergence of

the solution from yo(e) to Y(0,e) near t =0 is accomplished through

the boundary layer correction T(t,€).

If F(t) has unstable eigenvalues, we cannot expect the initial value

problem to have bounded solutions as € - 0 unless we restrict the initial

values to a lower dimensional manifold (cf. Levin [11]). It is still reason-

able, however, to allow arbitrary initial values if the matrix F(t) is

singular. (The usual expansion procedure will then break down.) For an

M-vector y, let us assume

(H1) the M x M matrix F(t) has a constant rank k,

0 <k <M, for all

t in 0 <t < T, its nonzero eigenvalues all have negative real parts

there, and its null space is spanned by M - k linearly independent

eigenvectors.

Under (H1), we shall find that the asymptotic solution of (1) - (2) re-

mains in the form (4) whenever the limiting equation (3) is consistent, i.e.

G cR(F), the range of F. Because F 1is singular, (3) no longer has a

unique solution. Its solution is determined up to an arbitrary element of

N(F), the null space of F, so additional analysis is required to determine

the unique limiting solution for t > 0. This is an instance of a "singular

singular-perturbation problem”" where the reduced problem (obtained when




€ = 0) has an infinity of solutions in regions of uniform convergence.
More generally, one could consider singular problems (1) where
fy(t,y,O) = (0 for some t values along some solutions y of the reduced

equation f(t,y,0) = 0. Difficult turning point problems would then be faced
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(cf. Wasow [20]). A somewhat more restricted class of nonlinear problems is

considered in 0'Malley and Flaherty [15]. Their analysis seeks to eventually
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develop numerical algorithms for such problems. Among other possible appli-
cations are high gain feedback control systems (cf. O0'Malley [13]), singular
control problems (0'Malley [14]), and certain Cauchy probiems in Banach

spaces (Gordon [6]). We note that the structure of the asymptotic solutions

will generally differ considerably if the elementary divisors of F corres-
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ponding to zero eigenvalues are nonlinear. An example is provided by

-1 0 O
£(t,y,e) = F(t,e)y for F = 0 0 -e . Further, if F remains non-
0 -1 O

singular, but has purely imaginary eigenvalues, rapidly oscillating solutions

would result (cf. Hoppensteadt and Miranker [9]).

2. Preliminary Linear Algebra

Under hypothesis (H1), we are guaranteed that the matrix F can be put

into its row-reduced form by an orthogonal matrix E(t), i.e.

u
® o - D
0

where U(t) 1is a k x M matrix of rank k. Indeed, E is guaranteed by
the singular value decomposition of F, i.e. F = E'DH for orthogonal

matrices E and H and diagonal D (cf., e.g., Stewart [16]). E can be
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obtained numerically by performing a sequence of Householder transformations
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(cf. Golub [4]). Moreover, the differentiability of E will follow that of
the coefficients under the constancy of rank assumption (cf. Golub and
Pereyra [5]).

The use of such orthogonal matrices to reduce F to echelon form seems
more convenient than the diagoralization procedures which have been more

common in the singular perturbation literature. Among other differences, it

avoids the use of eigenvectors of F. The success of traditional procedures
on closely related problems is demonstrated in Fife [3], Butuzov and
Vasil'eva [1], and Vasil'eva [19]. Alternative analogoué methods which don't

involve orthogonal matrices may be necessary for nonlinear problems (cf.

0'Malley [14]).
Writing
(7) E =
where El is k x M, we have the orthogonality condition

(8) EZF = 0.

Furthermore, the orthogonality of E implies that

Y - ¥ ¥ v ] -
9) EIEZ 0, 2131 Ik’EZEZ IMrk’ and ElEl + E2E2 IM'

These last relationships imply that

2
(10) P=EjE =P and Q=EJE, =Q
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are complementary projections. Indeed, a direct sum decomposition of M-space

results with

(11) R(Q) = N(F') and R(P) = R(F).

This follows since F'Q = (EZF)'E2 = 0 shows that Q projects into N(F')

and the dimensions of R(Q) and N(F') are both M - k.
E.FE! E_FE!

Finally, (7) and

1 B 3 i)

(8) show that EFE' = where the k x k matrix
0 0

(12) S = ElFEi is stable

since it shares the k stable eigenvalues of F.- Indeed, the purpose of
(H1) is to provide an orthogonal matrix E such that EF is row-reduced

with EFE' having k stable eigenvalues.

3. The Transformation Approach

Making the one-one transformation

(13) z = E(t)y,

z will satisfy

(14) ez' = EFE'z + EG + c[EE'z + -i- E(£(t,E'z,e) - £(t,E'2,0))].
Setting

zy Ely
as) £ = - ‘

2,/ \Eyy
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then, provides a transformed singular perturbation problem

[ - '
€z; Sz1 + ElFEzz2 + ElG + egl(zl,zz,t,e)

(16)
' =
622 EZG + 582(21,22't’e)
where g, = ﬁzE'z +-% Ez(f(t,E'z,e) - f(t,E'2,0)). The asymptotic behavior
of solutions to (16) differs considerably in the two cases EZG =0 and

EZG # C. Since E,G =0 if and only if QG = 0, Q projecting onto N(F'),

2
we're guaranteed that EZG = 0 if and only if the reduced problem (3) is
consistent. Taking
17) EZG = 0 throughout [O0,T],

then, reduces (16) to a "nonsingular singular-perturbation problem." For it,
classical singular perturbation theory (cf., e.g., Hoppensteadt [8] or
0'Malley [12]) implies that (16) - (17) has a limiting solution for t > 0
%10
which is the unique solution . of the reduced problem
20

= v
0 szlo + EIFEZZZO + EIG

(18)
By = 8(21gi2y0ta0)s  290(0) = E,(O5°(O),

presuming that the corresponding nonlinear initial value problem

(19) 20 = 8,(-S7IE (FEJZ,0 + ©),2,0,8,0),  2,0(0) = E,(0)y°(0)
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has a solution for 0 < t < T. Furthermore, that theory also shows that the
nonuniform convergence of 2 near t = 0 1is determined as the decaying

solution of the boundary layer problem

Ty 0
- g S(O)Tlo, Tlo(O) = El(O)y 0) - Zl(O)
(20)

dTZO

dt

= 0.

Thus, Tlo(T) = e_S(O)T

TlO(O) and T,,(0) =0 for Tt > 0. The bifurcation
character (cf., e.g., Cesari [2]) of these limiting problems makes them dif-
fer from the classical ones. Here, the reduced problem (18) consists of an
algebraic problem for a k-vector and an initial value problem for an M - k

vector, while the boundary layer problem (20) involves a k dimensional

initial value problem and an M - k dimensional algebraic problem.

4. A Direct Solution

Since the boundary layer correction MN(t,e) will be asymptotically

negligible for each t > 0, the outer solution

(21) Y(t,e) v I Y,(t)ed
, 4=0 3

must satisfy the original nearly linear system (1) as a power series in €.

Rewriting the equation as
(22) P(t)Y = -G(t) - [£(t,Y,e) - £(t,Y,0)] + e¥

and substituting in the expansion (21) implies that the terms of (21) must




successively satisfy the algebraic equations

(23) F(t)Yj = Ej_l(t)
where
E“l " _G’ Eo - Yo S fE(t’YD’O)’
(24) and
e fye(t,Yo,O)Yk +n (), k2>1

for a known function nk-l of YO’ Yl’ ey Assuming consistency of

, g
(3), G cR(F) so, by (8), QG = 0. Consistency of (23), by the Fredholm

alternative, requires Qf 0, j > 1, so we obtain the singular differ-

- o

ential equations

QYO - Qfe(t,YO,O)
(25) and

Qy, = nye(t’YO’o)Yk -Qn s k21

Taking (23) and (25) together nearly allows us to obtain the outer solu-

tion Y termwise. Specifically, multiplying (23) by E., implies that

1

' = = L]
EIF(EIE1 + Q)Yj 3153-1' j >0, so the invertibility of S ElFEI and the

definition of P imply that

(26) PY, = -AF(QY,) + A¢

b 3 j-1

where A = E'S-IE . Thus PY, and thereby Y

1 1 3 are completely determined as

3




linear functions of QYj. Putting (25) and (26) together, then, implies the

differential equations

(QYO) = Q(B(QYO) - Ac) + Qfe(t,B(QYo) - AG,0)
(27) and

(QYk) = [qQ + nye(t,YO,O)]IB(QYk) + Agk-ll = an—l’ k>1
since (26) implies that

(28) ¥y = B(QYj) + Ae;j_l

for the projection B = I - AF. Note that the representation (4) implies the

yet unspecified initial values

(29) O, (0) = QO)yp - QOIT(0), k> 0

needed to completely determine the outer solution Y(t,e).
If we anticipate that Q(O)HO(O) = 0 (paralleling the result that
Tzo(O) =0 in (20)), it will follow that the limiting outer solution is given

by
(30) Y, - B(QYO) - AG

where QYO, the projection of the limiting solution onto N(F'), satisfies

the nonlinear initial value problem
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@Yy = QB - AG) + Qf (t,B(QY) - AG,0)
(31)

0¥, (0) = Q(0)y’(0) .

We shall assume that the solution to (31) exists throughout 0 < t < T (in
analogy to our existence assumption for (19)). We note that (31) shows that
the limiting solution of (1) - (2) is determined by a dynamical system in an
M - k dimensional space. Further, we observe that uniqug solutions QYk and
Yk for k > 0 follow from the linear differential equations of (27) and the
algebraic relation (28).

By the form of (4), the boundary layer correction II must satisfy the
system
dy

(32) 3 " %% -y f(et,Y(et,e) + N(t,e),e) - f(et,Y(eT,€),€)

and the terms of its expansion

(33) N(t,e) v I Hj(T)Ej
=0

should tend to zero as 1T tends to infinity. 1In the quasilinear situation

when (2) holds, equating coefficients successively in (32) implies the linear

system
dn
il '
(34) Fralft {OL SRR NI
where is a linear combination of the preceding coefficients I L < j,

j=1 L?
with polynomial coefficients in T, and C-l = 0. Since QF = 0, it follows
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that %; (Q(O)ﬂj(t)) = Q(O)Lj_l(r). Thus, the decay requirement implies that

(35) QO (1) = -Q(0) JT 65y (5)ds.

We note, in particular, that (35) allows the termwise determination of the
initial values (29) needed to fix the outer solution. It remains to succes-

sively find the P(0)N,(t)'s. Multiplying (34) by El(O) implies that

i

d
aT (El(O)Hj) = S(O)(El(O)H )t El(O)F(O)(Q(O)Hj) + El(O);j_l. Using (35) and

h|
IM = Ei(O)El(O) + Q(0) implies the decaying solutions

36) (1) = B} (0)e> (O © - a© | ¢ s
T

j El(O)H

3

T -]

I $(0) (T-r) =
+ E; (0) [0 e El(O)[Cj_l(r) F(0)Q(0) Jr cj_l(s)dsldr-

Thus, the boundary layer terms are determined successively as exponentially
decaying vectors up to the initial value El(O)H(O,e), just as the outer ex-

pansion coefficients are determined up to Q(0)Y(0,e). Since the limiting

outer solution is known from (30) - (31) and higher order terms follow succes-

sively from (27) - (29), the unique higher order boundary layer correction

terms follow from (36) with

(37) El(O)H 0) = 21(0) (yg « T C0)), 320,

3 3

For j = 0, we'll have

S(0)T

38 1y = 80P 0)6°0) - By o) - Ao,

Since QBi = 0, it follows that IN. 1lies within the k dimensional

0
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R(F) = R(P). The function of this zero order boundary layer correction term,
then, is to "instantly" transfer from the prescribed initial vector yo(O)

to Y0(0+) where the reduced equation (3) is satisfied. Finally, we observe
that the expansion (4) which we've formally generated will, of course, agree
with that obtained by our earlier transformation procedure and is justified
by it.

Summarizing, we have

Theorem

Under hypothesis (H1l); (H2), that (3) is consistent; and (H3), that the

solution (QYO) of (34) exists for 0 <t < T, the unique solution of the

initial value problem (1) - (2) is asymptotically of the form (4) uniformly

in 0<t<T as €+ 0.

5. The Inconsistent Problem

1f EZG # 0, the trar=formed system (16) cannot be easily solved as

(16) - (17) was. Then, the limiting system (3) has no solutions and we cannot

“expect to have an outer solution of the form (21).

By variation of parameters, we know that solution of (1) - (2) must sat-

isfy the integral equation
' 0 i il
(39) y(t,e) = Y(t,e)y (e) +;f Y(t,e)¥Y “(s,e){G(t) + £(t,y,e) - £(t,y,0)}de
0 ; :
where Y 1is the fundamental matrix solution of the linear system

(40) V= —i— F(e)Y,  Y(0,€) = 1.

Such fundamental matrices can be constructed following the work of Turrittin )
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and earlier authors (cf. Turrittin [18]). Under natural assumptions, we can

show that ||V(t,e)V-1(s,c)|| <K for 0 < s,t <T for some constant K

provided no eigenvalues of F are unstable. When F is stable, we instead
-k (t-s) /e

have a decaying bound Ke and this allows the corresponding outer

solution for (1) - (2) to be bounded. When F has eigenvalues with zero real

parts, other estimates are appropriate (cf. Hoppensteadt and Miranker [9]).

For
(41) f(t,y,e) = F(t,e)y + G(t,€)
linear in y, (39) makes it natural to seek the solution to (1) in the form

(42) y(t,€) = z(t,e) + (r,e)

with (F(£,€),6(c,€)) v I (F (t),6 (t))ed.

when hypothesis (H1) holds for F 5
j=0

0
Here the outer solution %-z(t,e) and the boundary layer correction NI have
power series expansions ine€ and T +0 as T + «». Now the limiting solu-
tion %-zo(t) for t > 0 satisfies the homogeneous system Fo(t:)zo = 0.
Applying thé Fredholm alternative to the equation for rozl requires that
Q(io - rlzo - Go) = 0 where Q 1is the projection onto N(Fa). Using our

earlier notation, then, we have the unbounded limiting sclution ~% Zo(t) with

(43) z, = B(on)

where on satisfies the linear system

(44) (@z)" = (@ + QF))B(Qzy) + QG  Q(0)Z,(0) = o.




Ta,

i

A

=
¥
(]

) AT

L T

-

A

The boundary layer correction is calculated as before. When QG0 o,

ZO = 0 and the solution reduces to the form (4) obtained for the consistent
problem.

If f 1is nonlinear in y, the expansion (42) cannot gener;lly be used.
(A term like yk would provide a term lf Zg in ‘the outer region.) For
polynomial dependence on y, an appropriate scheme might be devised for the

inconsistent problem though we shall not do so (cf. Kersten [10], however,

for a related discussion concerning special boundary value problems).

Acknowledgment

This paper is based on earlier work with Joseph Flaherty of Rensselaer
Polytechnic Institute and owes much to interaction with him. The author also

benefitted from conversations with Wiktor Eckhaus of Rijksuniversiteit Utrecht.

References

1. V. F. Butuzov and A. B. Vasil'eva, "Differential and difference equation
systems with a small parameter for the case in which the unperturbed
(singular) system is in the spectrum." Soviet Math. Dokl. 6 (1970), 499-510.

2. L. Cesari, "Alternative methods in nonlinear analysis," International Confer-
ence on Differential Equations, H. A. Antosiewicz, editor, Academic Press,

3. P. C. Fife, "Singular perturbation problems whose degenerate forms have
many solutions," Applicable Analysis 1 (1972), 331-358.

4. G. H. Golub, "Numerical methods for solving linear least squares problems, i
Numer. Math. 7 (1965), 206-216.

5. G. H. Golub and V. Pereyra, '"Differentiation of pseudoinverses, separable
nonlinear least square problems, and other tales,”" Generalized Inverses and
Applications, M. Z. Nashed, editor, Academic Press, New York, 1976, 303-324.

6. N. Gordon, "Matched asymptotic expansion solutions of nonlinear partial
differential equations with a small parameter," SIAM J. Math. Anal. 6 (1975),
1007-1016.

7. F. C. Hoppensteadt, "Singular perturbations on the infinite interval," Trans.




=] 5
]
i
) _i
?ﬁ 8. F. Hoppensteadt, "Properties of solutions of ordinary differential equations
with a small parameter," Comm. Pure Appl. Math. 24 (1971), 807-840.

9. F. C. Hoppensteadt and W. L. Miranker, "Differential equations having
rapidly changing solutions: Analytic methods for weakly nonlinear systems,"
J. Differential Equations 22 (1976), 237-249.

10. P. H. M. Kersten, "Uniform asymptotic expansions for a class of nonlinear
systems of differential equations containing a small parameter," report,
Twente University of Technology, March 1972.

11. J. J. Levin, "The asymptotic behavior of the stable initial manifolds of a
system of nonlinear differential equations,” Trans. Amer. Math. Soc. 85
(1957), 357-368. :

12. R. E. 0'Malley, Jr., Introduction to Singular Perturbations, Academic Press,
New York, 1974.

13. R. E. O'Malley, Jr., "High gain feedback systems as singular singular-
perturbation problems," Proceedings, 1977 Joint Automatic Control Conference.

14. R. E. 0'Malley, Jr., "Partially singular control problems as singular
singular-perturbation problems," to appear.

i 15. R. E. O'Malley, Jr. and J. E. Flaherty, "Singular singular-perturbation
problems," Lecture Notes in Math. :

16. G. W. Steﬁatt, Introduction to Matrix Computations, Academic Press, New York,
1973.

17. A. N. Tihonov, "Systems of differential equations containing small parameters
in the derivatives," Mat. Sb. 31 (73) (1952), 575-586.

18. H. L. Turrittin, "Asymptotic expansions of solutions of systems of ordinary
differential equations containing a parameter," Contrib. Theory Nonlinear
Oscillations 2 (1952), 81-116.

19. A. B. Vasil'eva, "Singularly perturbed systems containing indeterminacy in
the case of degeneracy,”" Soviet Math. Dokl. 16 (1975), 1121-1125.

20. W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Wiley,
New York, 1965.

b R R it 2 RGN TR PR S5 1 SR i i -



